Overexpression of isocitrate lyase-glyoxylate bypass influence on metabolism in Aspergillus niger.

نویسندگان

  • S Meijer
  • J Otero
  • R Olivares
  • M R Andersen
  • L Olsson
  • J Nielsen
چکیده

In order to improve the production of succinate and malate by the filamentous fungus Aspergillus niger the activity of the glyoxylate bypass pathway was increased by over-expression of the isocitrate lyase (icl) gene. The hypothesis was that when isocitrate lyase was up-regulated the flux towards glyoxylate would increase, leading to excess formation of malate and succinate compared to the wild-type. However,metabolic network analysis showed that an increased icl expression did not result in an increased glyoxylate bypass flux. The analysis did show a global response with respect to gene expression, leading to an increased flux through the oxidative part of the TCA cycle. Instead of an increased production of succinate and malate, a major increase in fumarate production was observed. The effect of malonate, a competitive inhibitor of succinate dehydrogenase (SDH), on the physiological behaviour of the cells was investigated. Inhibition of SDH was expected to lead to succinate production, but this was not observed. There was an increase in citrate and oxalate production in the wild-type strain. Further more, in the strain with over-expression of icl the organic acid production shifted from fumarate towards malate production when malonate was added to the cultivation medium. Overall,the icl over-expression and malonate addition had a significant impact on metabolism and on organic acid production profiles. Although the expected succinate and malate formation was not observed, a distinct and interesting production of fumarate and malate was found.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aspergillus fumigatus does not require fatty acid metabolism via isocitrate lyase for development of invasive aspergillosis.

Aspergillus fumigatus is the most prevalent airborne filamentous fungus causing invasive aspergillosis in immunocompromised individuals. Only a limited number of determinants directly associated with virulence are known, and the metabolic requirements of the fungus to grow inside a host have not yet been investigated. Previous studies on pathogenic microorganisms, i.e., the bacterium Mycobacter...

متن کامل

Purification and characterization of Acinetobacter calcoaceticus isocitrate lyase.

Acinetobacter calcoaceticus is capable of growing on acetate or compounds that are metabolized to acetate. During adaptation to growth on acetate, A. calcoaceticus B4 exhibits an increase in NADP(+)-isocitrate dehydrogenase and isocitrate lyase activities. In contrast, during adaptation to growth on acetate, Escherichia coli exhibits a decrease in NADP(+)-isocitrate dehydrogenase activity that ...

متن کامل

Mechanism of fumaric acid accumulation in Rhizopus nigricans.

It is doubtful that the glyoxylate bypass plays a significant role in the accumulation of fumaric acid by fungi, as has been postulated. In high glucose media, which favor fumarate production, isocitrate lyase (threo-D(s) isocitrate glyoxylate lyase), which is the key enzyme of the glyoxylate bypass, is strongly repressed. The specific activity of this enzyme remains low as long as glucose is p...

متن کامل

Glyoxylate bypass operon of Escherichia coli: cloning and determination of the functional map.

In Escherichia coli, a single operon encodes the metabolic and regulatory enzymes of the glyoxylate bypass. The metabolic enzymes, isocitrate lyase and malate synthase, are expressed from aceA and aceB, and the regulatory enzyme, isocitrate dehydrogenase kinase/phosphatase, is expressed from aceK. We cloned this operon and determined its functional map by deletion analysis. The order of the gen...

متن کامل

The glyoxylate bypass of Ralstonia eutropha.

The glyoxylate bypass genes aceA1 (isocitrate lyase 1, ICL1), aceA2 (isocitrate lyase 2, ICL2) and aceB1 (malate synthase, MS1) of Ralstonia eutropha HF39 were cloned, sequenced and functionally expressed in Escherichia coli. Interposon-mutants of all three genes (DeltaaceA1, DeltaaceA2 and DeltaaceB1) were constructed, and the phenotypes of the respective mutants were investigated. Whereas R. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Metabolic engineering

دوره 11 2  شماره 

صفحات  -

تاریخ انتشار 2009